Monotone Spaces and Nearly Lipschitz Maps

نویسنده

  • Aleš Nekvinda
چکیده

A metric space (X, d) is called c-monotone if there is a linear order < on X and c > 0 such that d(x, y) 6 c d(x, z) for all x < y < z in X. A brief account of investigation of monotone spaces including applications is presented. 1 Monotone and σ-Monotone Spaces. In [6] I investigated existence of sets in Euclidean spaces that have large Hausdorff dimension and yet host no continuous finite Borel measure except the trivial one. (Details are provided below.) I constructed such a set within a line and then extracted the following property of the line that makes the construction work. Definition 1.1. Let c > 0. A metric space (X, d) is called c-monotone if there is a linear order < on X such that d(x, y) 6 c d(x, z) for all x < y < z in X, and monotone if there is c > 0 such that (X, d) is c-monotone. Numerous straightforward generalizations of monotonicity are possible, e.g. local or pointwise monotonicity. We shall consider σ-monotone spaces, i.e. spaces that are countable unions of monotone subspaces (with possibly different witnessing constants). This property still yields the desired measuretheoretic properties of the space. Mathematical Reviews subject classification: Primary: 54E35, 54F05; Secondary: 28A80, 26A27

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

A ug 2 00 9 METRIC DIFFERENTIATION , MONOTONICITY AND MAPS TO L 1

This is one of a series of papers on Lipschitz maps from metric spaces to L. Here we present the details of results which were announced in [CK06, Section 1.8]: a new approach to the infinitesimal structure of Lipschitz maps into L, and, as a first application, an alternative proof of the main theorem of [CK06], that the Heisenberg group does not admit a bi-Lipschitz embedding in L. The proof u...

متن کامل

Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces

Let [Formula: see text], [Formula: see text], and [Formula: see text] be a strongly monotone and Lipschitz mapping. A Krasnoselskii-type sequence is constructed and proved to converge strongly to the unique solution of [Formula: see text]. Furthermore, our technique of proo f is of independent interest.

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010